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Monte Carlo simulations have been carried out for a system of monomers on square lattices that, by
decreasing temperature or increasing density, polymerize reversibly into chains with two allowed directions
and, at the same time, undergo a continuous isotropic-nematic �IN� transition. The results show that the
self-assembly process affects the nature of the transition. Thus, the calculation of the critical exponents and the
behavior of Binder cumulants indicate that the universality class of the IN transition changes from two-
dimensional Ising-type for monodisperse rods without self-assembly to q=1 Potts-type for self-assembled rods.
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Self-assembly is a challenging field of research driven
principally by the desire to design new materials. Moreover,
self-assembly is used permanently in biological systems to
construct supramolecular structures such as virus capsids,
filaments, and many others large molecular complexes. So,
understanding the rules of self-assembly has important appli-
cations to both materials science and biology �1�.

On the other hand, the isotropic-nematic �IN� transition in
solutions of rodlike particles has been attracting a great deal
of interest since long ago. A seminal contribution to this
subject was made by Onsager �2� with his paper on the IN
transitions of infinitely thin rods. This theory shows that par-
ticles interacting with only excluded volume interaction may
exhibit a rich phase diagram despite the absence of any at-
traction. Later, computer simulations of hard ellipses of finite
length �3� confirmed the Onsager prediction that particle
shape anisotropy can be a sufficient condition to induce the
long-range orientational order found in nematic liquid crys-
tals.

In contrast to ordinary liquid crystal, many rodlike bio-
logical polymers are formed by monomers reversibly self-
assembling into chains of arbitrary length so that these sys-
tems exhibit a broad equilibrium distribution of filament
lengths. An experimental contribution to the study of these
systems has been presented by Viamontes et al. �4�. The
authors reported a continuous IN transition for solutions of
long F-actin �average filament length longer than 2 �m� and
showed the existence of a first-order phase separation for
solutions of F-actin with average filament length shorter than
2 �m. These findings contradict what is generally accepted
in the literature: in three dimensions, the IN transition is
typically first order. On the other hand, in two dimensions
both continuous �5� and first-order �6� IN transitions can oc-
cur. Here, we consider a self-assembled two-dimensional
�2D� system that undergo a IN transition, which is expected
to be a continuous phase transition �7�.

As mentioned above, the self-assembled system is intrin-
sically polydisperse. While being able to solve explicitly
only the monodisperse case, Onsager �2� already outlined the
possible extension of the theory to polydisperse systems. In

this line of work, a detailed investigation of the effects of full
length polydispersity, i.e., of a continuous distribution of rod
lengths, on the Onsager theory has been recently developed
by Speranza and Sollich �8�. Another approach to the prob-
lem of monodisperse rodlike mixtures has been proposed by
Zwanzig �9�. The Zwanzig model has been also extended to
polydisperse systems �10�, providing thus a useful starting
point for understanding the effects of polydispersity on the
phase behavior of hard rod systems. However, a complete
description of a system of self-assembled rods should con-
sider not only the effects of polydispersity but also the influ-
ence of the polymerization process.

In this context, we focus on a system composed of mono-
mers with two attractive �sticky� poles that polymerize re-
versibly into polydisperse chains and, at the same time, un-
dergo a continuous phase transition. So, the interplay
between the self-assembly process and the nematic ordering
is a distinctive characteristic of these systems.

The same system has been recently considered by Tavares
et al. �7�. Using an approach in the spirit of the Zwanzig
model, the authors studied the IN transition occurring in a
two-dimensional system of self-assembled rigid rods. The
obtained results revealed that nematic ordering enhances
bonding. In addition, the average rod length was described
quantitatively in both phases, while the location of the order-
ing transition, which was found to be continuous, was pre-
dicted semiquantitatively by the theory.

Despite these interesting results there is an open question
to be answered: “what type of phase transition is it?” Tavares
et al. �7� assumed as working hypothesis that the nature of
the IN transition remains unchanged with respect to the case
of monodisperse rigid rods on square lattices, where the tran-
sition is in the 2D Ising universality class �11,12�. In this
context, the confirmation �or not� of this hypothesis is not
only important to resolve the universality class of the IN
transition occurring in a system of self-assembled rods but
also to shed light on our understanding of the effect of the
self-assembly process on the nature of the transition. The
objective of this Rapid Communication is to provide a thor-
ough study in this direction. For this purpose, extensive
Monte Carlo �MC� simulations supplemented by analysis us-
ing finite-size scaling �FSS� theory �13� have been carried
out to study the critical behavior in a system of self-*antorami@unsl.edu.ar
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assembled rigid rods deposited on square lattices with two
allowed directions. The calculations were developed at con-
stant temperature and different densities, thus allowing a di-
rect comparison with previous results for long monodisperse
rigid rods on two-dimensional lattices �11,12�. Then, the con-
ventional normalized scaling variable ��T /Tc−1 was re-
placed by ��� /�c−1, where T, Tc, �, and �c represent tem-
perature, critical temperature, density, and critical density,
respectively. A nematic phase, characterized by a big domain
of parallel self-assembled rigid rods, is separated from the
disordered state by a continuous IN transition occurring at a
finite critical density. The results show that the self-assembly
process affects the nature of the transition. Thus, the deter-
mination of the critical exponents indicates that the univer-
sality class of the IN transition changes from 2D Ising-type
for monodisperse rods without self-assembly �12� to q=1
Potts-type for self-assembled rods.

In a recent paper, Fischer and Vink �14� indicated that the
transition studied in Refs. �11,12� corresponds to a liquid-gas
transition rather than IN. This interpretation is consistent
with the 2D-Ising critical behavior observed for monodis-
perse rigid rods on square lattices. However, as mentioned in
the previous paragraph, the universality class of self-
assembled rods changes from that of the 2D Ising model and
the result in Ref. �14� is not generalizable to the system
studied here. Accordingly, we will continue using the term
“IN phase transition” as in the previous work of Tavares
et al. �7�.

As in Ref. �7�, we consider a system of self-assembled
rods with a discrete number of orientations in 2D. We as-
sume that the substrate is represented by a square lattice of
M =L�L sites with periodic boundary conditions. N par-
ticles are adsorbed on the substrate with two possible orien-
tations along the principal axis of the lattice. These particles
interact with nearest neighbors �NN� through anisotropic at-
tractive interactions. Then the adsorbed phase is character-
ized by the Hamiltonian H=��i,j� wijcicj, where �i , j� indi-
cates a sum over NN sites; wij represents the NN lateral
interaction, which is wij =−w if two neighboring particles i
and j are aligned with each other and with the intermolecular
vector and is wij =0 otherwise; and ci is the occupation vari-
able with ci=0 if the site i is empty, and ci=1 if the site i is
occupied.

A cluster or uninterrupted sequence of bonded particles is
a self-assembled rod. At fixed temperature, the average rod
length increases as the density increases and the polydisperse
rods will undergo a nematic ordering transition �7�. In order
to follow the formation of the nematic phase from the iso-
tropic phase, we use the order parameter defined in Ref. �7�,
which can be written as �= 	Nh−Nv	 / �Nh+Nv�, where Nh�Nv�
is the number of particles in clusters aligned along the hori-
zontal �vertical� direction. When the system is disordered, all
orientations are equivalents and � is zero. In the critical re-
gime, the particles align along one direction and � is differ-
ent from zero. In other words, the IN phase transition is
accomplished by a breaking of the orientational symmetry
and � appears as a proper order parameter to elucidate this
phenomenon.

The problem has been studied by canonical Monte Carlo
simulations using an vacancy-particle-exchange Kawasaki

dynamics �15� and Metropolis acceptance probability �16�.
Typically, the equilibrium state can be well reproduced after
discarding the first 5�106 Monte Carlo steps �MCS�. Then,
the next 6�108 MCS are used to compute averages.

In our Monte Carlo simulations, we set the temperature T,
varied the density �=N /M, and monitored the order param-
eter �, which can be calculated as simple average. The quan-
tities related with the order parameter, such as the suscepti-
bility �, and the reduced fourth-order cumulant UL
introduced by Binder �13� were calculated as
�=L2 /kBT���2�− ���2� and UL=1− ��4� / �3��2�2�, where �¯ �
means the average over the MC simulation runs. In addition,
in order to discuss the nature of the phase transition, the
fourth-order energy cumulant UE was obtained as
UE=1− �H4� / �3�H2�2�.

The critical behavior of the present model has been inves-
tigated by means of the computational scheme described in
the previous paragraphs and finite-size scaling analysis. The
FSS theory implies the following behavior of �, �, and

UL at criticality: �=L−�/	�̃�L1/	��, �=L
/	�̃�L1/	��, and

UL= ŨL�L1/	�� for L→�, �→0 such that L1/	�=finite, where
��� /�c−1. Here �, 
, and 	 are the standard critical expo-
nents of the order parameter, susceptibility, and correlation

length, respectively. �̃ , �̃ and ŨL are scaling functions for the
respective quantities.

The phase diagram of the system under study has been
recently reported by Tavares et al. �7�. The authors showed
that the critical density, at which the IN transition occurs,
increases monotonically as kBT /w is increased. Thus, the
nematic phase is stable at low temperatures and high densi-
ties �see Fig. 1�a� in Ref. �7��. In addition, Tavares et al.
found strong numerical evidence that the IN transition is a
continuous phase transition. However, the authors were not
able to determine the critical quantities characterizing the
universality class of the mentioned transition. In the follow-
ing, we try to resolve this problem.

In our study and based on the phase diagram given in Ref.
�7�, we set the lateral interaction to w=4kBT. With this value
of w, it is expected the appearance of a nematic phase at
intermediate densities. Accordingly, the density was varied
between 0.4 and 0.6. For each value of �, the effect of finite
size was investigated by examining square lattices with
L=60, 80, 100, and 120.

We start with the calculation of the order parameter �Fig.
1�, susceptibility �inset in Fig. 1�, and cumulant �Fig. 2� plot-
ted versus � for several lattice sizes. In the vicinity of the
critical point, cumulants show a strong dependence on the
system size. However, at the critical point the cumulants
adopt a nontrivial value U�; irrespective of system sizes in
the scaling limit. Thus, plotting UL��� for different linear
dimensions yields an intersection point U�, which gives an
accurate estimation of the critical density in the infinite sys-
tem and allows us to make a preliminary identification of the
universality class of the transition �13�. In this case, the val-
ues obtained for the critical density and the intersection point
of the cumulants were �c=0.524�4� and U�=0.639�3�, re-
spectively. This fixed value of the cumulants has changed
from that obtained for monodisperse rigid rods on square
lattices �U�=0.615�5��, which may be taken as a first indica-
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tion that the universality class of the present model is differ-
ent from the well-known 2D Ising-type for monodisperse
rods �12�. In the lower-right inset, the data are plotted over a
wider range of densities. As can be seen, the curves exhibit
the typical behavior of UL in the presence of a continuous
phase transition. Namely, the order-parameter cumulant
shows a smooth increase from 0 to 2/3 instead of the char-
acteristic deep �negative� minimum, as in a first-order phase
transition �13�.

In order to discard the possibility that the phase transition
is a first-order one, the energy cumulants have been mea-
sured for different lattice sizes ranging between L=20 and
L=80. As is well known, the finite-size analysis of UE is a
simple and direct way to determine the order of a phase
transition �13�. Our results for UE show a dip close to the
critical density �c=0.524 for all system sizes, but this mini-
mum scales to 2/3 in the thermodynamic limit as can be seen
in the upper-left inset of Fig. 2. These results exclude a first-
order transition, confirming the predictions by Tavares et al.
�7�.

Next, the critical exponents will be calculated. As stated
in Ref. �17�, the critical exponent 	 can be obtained by con-

sidering the scaling behavior of certain thermodynamic de-
rivatives with respect to the density �, for example, the de-
rivative of the cumulant and the logarithmic derivatives of
��� and ��2�. In Fig. 3�a�, we plot the maximum value of
these derivatives as a function of system size on a log-log
scale. The results for 1 /	 from these fits are given in Fig.
3�a�. Combining these three estimates, we obtain
	=1.33�1�. Once we know 	, the exponent 
 can be deter-
mined by scaling the maximum value of the susceptibility
�17�. Our data for � 	max are shown in Fig. 3�b�. The value
obtained for 
 is 
=2.36�4�.

On the other hand, the standard way to extract the expo-
nent ratio � /	 is to study the scaling behavior of ��� at the
point of inflection ���� 	inf�, i.e., at the point where d��� /d� is
maximal. The scaling of ��� 	inf is shown in Fig. 3�b�. The
linear fit through all data points gives ����� 	inf�=0.139�12�. In
the case of d��� /d� 	max �see Fig. 3�b��, the value obtained
from the fit is ��d���/d� 	max�=0.138�3�. Combining the two es-
timates, we obtain the final value �=0.139�6�.

The values calculated for 	, �, and 
 clearly indicate that
the IN phase transition belongs to the q=1 Potts universality
class �ordinary percolation� �18�. This finding is also consis-
tent with the crossing point of the cumulants shown in Fig. 2,
which is in agreement with recent simulations on 2D site
percolation by Vink �19�, where a value of U�
0.638 has
been obtained.

The universality observed in this study can be interpreted
by analyzing the connection between the thermal phase tran-
sition �IN phase transition� occurring in the system and the
behavior of the clusters of aligned monomers. In fact, pre-
liminary results �based on the observation of the adsorbed
state at critical regime� suggest that, at intermediate concen-
trations, the appearance of nematic order at critical density is
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accompanied by the simultaneous presence of a cluster of
aligned monomers connecting the extremes of the lattice. In
these conditions, an exact correspondence is expected be-
tween �1� the nematic order parameter and the infinite clus-
ter; �2� the susceptibility and the mean cluster size; and �3�
the IN phase transition and the percolation phase transition.
A similar behavior has been observed for the site-diluted
quenched Ising model at the percolation threshold �20�.

The results are also consistent with previous research on
polymer systems in 2D such as polymer networks �21� and
branched polymers �22�, which were shown to be in the uni-
versality class of ordinary percolation. Furthermore, the
study of linear segments of size k and k-mers of different
structures and forms deposited on 2D regular lattices has
demonstrated that the system, in all cases, belongs to the
random percolation universality class �23�.

The scaling behavior can be further tested by plotting
���L�/	 vs 	�	L1/	, �L−
/	 vs �L1/	, and U vs 	�	L1/	 and look-
ing for data collapsing. Using �c=0.524 and the exact values

of the critical exponents of the ordinary percolation 	=4 /3,
�=5 /36, and 
=43 /18, we obtain an excellent scaling col-
lapse as it is shown in Figs. 4 and 5. This Rapid Communi-
cation leads to independent controls and consistency checks
of the values of all the critical exponents.

In summary, we have used Monte Carlo simulations and
finite-size scaling theory to resolve the nature and universal-
ity class of the IN phase transition occurring in a model of
self-assembled rigid rods. The existence of a continuous
phase transition was confirmed. In addition, as was evident
from our results, the self-assembly process affects the uni-
versality of the IN transition. Thus, the accurate determina-
tion of the critical exponents along with the behavior of
Binder cumulants revealed that the universality class of the
IN transition changes from 2D Ising-type for monodisperse
rods without self-assembly to q=1 Potts-type for self-
assembled rods.
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